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The pervasive effects of ageing and somatic mutation shape 
the landscape of human disease in later life1. A ubiq-
uitous feature of ageing is the development of somatic 

mutation-driven clonal expansions in aged tissues2,3. In blood, 
somatic mutations that enhance cellular fitness of individual 
hematopoietic stem cells (HSCs) and their progeny give rise to the 
common age-related phenomenon of CH4–7. CH becomes increas-
ingly prevalent with age4–6 and is associated with an increased risk 
of hematological cancers4,5,8,9 and some nonhematological condi-
tions5,10,11. However, our understanding of the biological basis for 
these associations remains limited, as does our ability to explain 
how CH driver mutations promote clonal expansion of mutant 
HSCs12. In fact, whilst CH is defined by its association with 
somatic mutations, its development is influenced by nonmutation 
factors13–16 and by the heritable genome17,18, in ways that remain 
poorly understood.

Insights into the causes and consequences of CH are confounded 
by its intimate relationship with ageing. Moreover, even when 
robust associations are identified, their causality can be difficult to 
establish. Here, we perform a comprehensive investigation of the 
genetic and phenotypic associations of CH in 200,453 UK Biobank 
(UKB) participants, yielding a step change in our understanding 
of CH pathogenesis. Our study reveals multiple new germline loci 
associated with CH, including several that interact with specific CH 
subtypes; uncovers causal links between CH and diverse pathologi-
cal states across organ systems; and provides evidence for causal 

associations between smoking and telomere length and CH risk, 
amongst a series of insights.

Results
Overall and gene-specific prevalence of CH by age and sex. To 
identify individuals with CH, we analyzed blood whole-exome 
sequencing (WES) data from 200,453 UKB participants of diverse 
ancestry19 aged 38–72 yr (Extended Data Fig. 1a–c). We called 
somatic mutations in 43 CH genes (Supplementary Table 1) 
and filtered these against a predefined list of CH driver variants 
(Supplementary Tables 2 and 3). This identified 11,697 mutations 
(Supplementary Table 4) in 10,924 individuals (UKB prevalence: 
5.45%), displaying patterns in line with previous reports4,5,17 (Fig. 1a 
and Extended Data Fig. 1d–h). Interestingly, the age-related rise in 
CH prevalence differed between driver genes (Fig. 1b and Extended 
Data Fig. 2a–c), for example, DNMT3A prevalence rose earlier in 
life compared with SF3B1 and SRSF2, consistent with what we now 
know about the lifelong behavior of these CH subtypes20. Females 
and males were similarly affected overall (Extended Data Fig. 2d); 
however, there were significant gene-level differences between sexes 
(Fig. 1c), reflecting the sex-specific differences in prevalence of 
these gene-level frequencies in myeloid malignancies21.

Associations between CH and traits prevalent at baseline. To 
identify associations between CH and traits or diseases prevalent at 
the time of enrollment to the UKB, we performed logistic regression 
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analyses with CH as the outcome in the cohort of 200,453 individu-
als. We found that age increased the risk of CH by 6.7% per year 
and that prevalent hypertension, but not obesity or type 2 diabetes 
(T2D), was associated with CH status (Fig. 2a and Supplementary 
Table 5). We also found that individuals with CH were more likely 
to be current or former smokers, an association that held true for 
different forms of CH and was strongest for ASXL1-mutant CH 
(Fig. 2a and Supplementary Table 5). Analyses of complete blood 
count and biochemical parameters identified both known and 
previously unreported associations with overall CH and CH sub-
types (Fig. 2a and Supplementary Tables 6 and 7). We also found 
that CH status was associated with lower prevalent levels of total 
and low-density lipoprotein cholesterol, most marked for JAK2 and 
splicing factor-mutant CH (Fig. 2a and Supplementary Table 7).

Associations between CH and incident disease. We next per-
formed a phenome-wide association study (PheWAS) of incident 
disease in the UKB considering CH at baseline as the exposure. This 
identified strong associations with myeloid malignancies and asso-
ciated sequelae (Extended Data Fig. 3a and Supplementary Table 8).  
Analyses for selected phenotypes (Supplementary Table 9) also 
identified a high incidence of myeloid malignancies with all forms 
of CH (Fig. 2b and Supplementary Table 10) and increased risks 

of other hematological and nonhematological neoplasia, including 
lymphoma, lung and kidney cancers (Fig. 2b and Supplementary 
Table 10). Notably, associations with lung and other cancers were 
also observed in self-reported never smokers (Extended Data Fig. 
3b and Supplementary Table 11). Unlike previous reports link-
ing CH with ischemic cardiovascular disease (CVD)5,10,22, we did 
not find a significant association between CH and ischemic CVD, 
including coronary artery disease (CAD) and stroke; but we did 
find an association with heart failure and atrial fibrillation, and a 
composite of all CVD conditions in CH with large clones in mul-
tivariable regression models (Fig. 2b and Supplementary Table 10). 
While CH was associated with CAD and ischemic stroke in unad-
justed analyses, adjusting for age led to these associations attenuat-
ing to the null, demonstrating the impact of age as a confounder 
(Extended Data Fig. 3c and Supplementary Table 12). Finally, we 
also found that CH increased the risk of death from diverse causes 
(Fig. 2b and Supplementary Table 13).

Heritability of CH and cell-type-specific enrichment. To identify 
heritable determinants of CH risk, we performed a genome-wide 
association study (GWAS) on the 184,121 individuals with geneti-
cally inferred European ancestry to identify common (minor allele 
frequency (MAF) > 1%) germline genetic variants predisposing to 
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Fig. 1 | Characterization of CH in the uKB. a, Composite plot summarizing mutations in the 10 most common driver genes in 10,924 individuals with 
CH. Each column in the waterfall plot represents a single individual, with mutation types color-coded. Bars on the left quantify mutations per gene as a 
percentage of all CH mutations identified. Violin plots on the right show the distribution of VAFs, with vertical lines representing the median and dots 
with horizontal lines the mean ± s.d. b, Empirical cumulative distribution (ECD) of the age of individuals with CH overall (black) and stratified by the eight 
most common driver genes. Compared with DNMT3A, mutations in ATM were observed 3 yr earlier (P = 7.2 × 10-4), while mutations in ASXL1, PPM1D, 
SRSF2 and SF3B1 were observed 1 (P = 2.7 × 10−8), 1 (P = 8.5 × 10−6), 2 (P = 5.7 × 10−10) and 3 (P = 6.5 × 10−6) years later, respectively. Differences were 
calculated using two-sided pairwise Wilcoxon rank sum tests. c, Bar plot showing the female to male (F:M) ratio of CH carriers with mutations in the ten 
most common driver genes. GNB1 (P = 2.3 × 10−3) and DNMT3A (P = 3.2 × 10−11) show a higher F:M ratio, while PPM1D (P = 6.4 × 10−3), TP53 (P = 1 × 10−3), 
JAK2 (P = 5.7 × 10−3), SF3B1 (P = 3.5 × 10−4), ASXL1 (P = 5.7 × 10−28) and SRSF2 (P = 3.8 × 10−14) show lower F:M ratio. ‘Other’ represents the remaining driver 
genes grouped together and ‘Ctrl’ the ratio for individuals without CH. Dotted vertical line shows the F:M ratio observed in the full cohort (F:M = 1.2).  
P values are from a chi-squared test comparing the distribution for each gene with ‘Ctrl’.
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CH. In the GWAS, we compared 10,203 individuals with CH with 
173,918 individuals without CH, after quality control (QC) of the 
germline genotype data. Linkage disequilibrium score regression 
(LDSC)23 showed little evidence of inflation in test statistics due 
to population structure (intercept = 1.009; lambda genomic con-
trol factor = 0.999). The narrow-sense (additive) heritability of 
CH was estimated at 3.57% (s.e. = 0.85%). We partitioned the heri-
tability across four major histone marks observed in 10 cell-type 
groups aggregated from 220 cell-type-specific annotations24 and 
identified strong enrichment of the polygenic CH signal in histone 
marks enriched in hematopoietic cells (P = 5.9 × 10−5; Fig. 3a and 
Supplementary Table 14). Next, we partitioned the heritability of CH 
across open chromatin state regions in various hematopoietic pro-
genitor cells and lineages24,25. Previous work on other traits25,26 has 

established that trait heritability tends to be enriched in transcrip-
tionally active open chromatin regions in trait-relevant cell types, 
helping implicate specific cell types as key mediators of the GWAS 
signal. Consistent with this, we found CH heritability enrichment 
in accessible chromatin regions in HSCs, common lymphoid and 
myeloid progenitors, multipotent and erythroid progenitors, and B 
cells (Fig. 3b and Supplementary Table 15). Overall, these findings 
endorse the intuitive assumption that CH associations exert their 
greatest biological effect on HSC/progenitor populations.

Germline genetic loci associated with overall CH risk. Linkage 
disequilibrium (LD)-based clumping of 10,013,700 common 
autosomal and X chromosomal variants identified seven inde-
pendent (r2 < 0.05) genome-wide significant loci (lead variant 
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P < 5 × 10−8) associated with risk of developing CH, including 
three CH loci previously reported17 in European-ancestry popu-
lations: two at 5p15.33-TERT and one at 3q25.33-SMC4 (Fig. 4a 
and Supplementary Table 16). We identified a new top variant in 
the 5p15.33 region, rs2853677 (P = 2.4 × 10−50), which was weakly 
correlated (r2 = 0.19) with the previously reported17 top variant, 
rs7705526 (P = 3.4 × 10−44 in our analysis). Overall, there was evi-
dence for three independent (r2 < 0.05) signals at 5p15.33 marked 
by lead variants rs2853677, rs13156167 and rs2086132, the lat-
ter representing a new signal independent of the two previously 
published17 signals, rs7705526 and rs13167280. After approximate 
conditional analysis27 (Supplementary Table 17) conditioning on 
the three lead variants in the TERT region, the previously pub-
lished top variant, rs7705526, continued to remain genome-wide 
significant, suggesting that it represented a fourth signal in this 
region. Conditional analysis also highlighted the existence of a 
fifth independent association at 5p15.33 marked by rs13356700, 
~776 kb from TERT and ~34 kb from EXOC3 (Supplementary 
Table 17), that encodes an exocyst complex component implicated 
in arterial thrombosis28. The variant rs13356700 was in strong LD 
(r2 = 0.84) with rs10072668 which is associated with hemoglobin  

concentration/hematocrit percentage29. At 3q25.33-SMC4, the pre-
viously reported17 top variant, rs1210060191, was not captured in 
the UKB and our top association was rs12632224 (P = 2.3 × 10−9). 
We also identified three other new genome-wide significant loci 
associated with overall CH susceptibility (Fig. 4a and Supplementary 
Table 16): 4q35.1-ENPP6 (rs13130545), 6q21-CD164 (rs35452836) 
and 11q22.3-ATM (rs11212666). As we were underpowered for 
GWAS in non-European-ancestry UKB participants, we evaluated 
associations of the seven lead variants for overall CH in the 505 
individuals with CH and 11,893 controls comprising this ancestrally 
diverse subcohort and found that 6 of 7 variants displayed effect size 
estimates consistent with those in individuals of European ancestry 
(Extended Data Fig. 4).

Stratified CH GWAS and association heterogeneity. Next, we 
investigated whether the development of certain CH subtypes 
is affected by germline variants. Thus, we performed GWAS for 
four additional CH traits—stratifying by the two main CH genes, 
DNMT3A and TET2, and by clonal size, defining small clones 
as those with variant allele fraction (VAF) < 0.1 and large clones 
by VAF ≥ 0.1. Focusing on 5,185 individuals with DNMT3A and 
2,041 with TET2 mutations and 173,918 controls (individuals of 
European ancestry without CH), we identified eight and three 
genome-wide significant loci associated with DNMT3A- and 
TET2-mutant CH, respectively (Fig. 4b,c and Supplementary 
Tables 18 and 19). We replicated the only previously published risk 
locus associated with DNMT3A-CH in European-ancestry popu-
lations at 14q32.13-TCL1A. The overall CH loci at 5p15.33-TERT 
(signals with lead variants rs2853677, rs13156167 and rs7705526), 
3q25.33-SMC4, 6q21-CD164 and 11q22.3-ATM were also 
genome-wide significant for DNMT3A-CH. We also found two 
new loci for DNMT3A-CH marked by lead variants rs138994074 
at 1q42.12-PARP1 and rs8088824 at 18q12.3-SETBP1 (Fig. 4b 
and Supplementary Table 18). The three TET2-CH-associated 
loci included the lead variant rs2736100 at 5p15.33-TERT, 
which was moderately correlated (r2 = 0.44) with the overall CH 
lead variant rs2853677 in the same region. The other two risk 
loci, both new for TET2-CH, were at lead variants rs10131341 
(14q32.13-TCL1A) and rs79633204 (7q32.2-TMEM209; Fig. 4c 
and Supplementary Table 19). Notably, the A allele of rs10131341 
had opposite associations with TET2-CH (odds ratio (OR) = 1.28, 
P = 6.8 × 10−10) versus DNMT3A-CH (OR = 0.87, P = 6.4 × 10−8).  
A trend for opposite effects at 14q32.13-TCL1A was also observed 
in a previous study17, but did not achieve genome-wide signifi-
cance for TET2-CH.

When comparing 4,049 individuals with large or 6,154 individu-
als with small clones against the 173,918 controls without CH, we 
found that the overall CH loci at 5p15.33-TERT and 3q25.33-SMC4 
were associated at genome-wide significance with large clone CH 
(Fig. 4d and Supplementary Table 20), while 5p15.33-TERT and 
6q21-CD164 were associated with small clone CH. For small clone 
CH risk, we also identified a previously unreported locus marked by 
rs72755524 at 5p13.3 in a region with several long non-coding RNAs 
(lncRNAs) (Fig. 4e and Supplementary Table 21). Additional signals 
suggested by approximate conditional analysis at each locus identi-
fied in this study are listed in Supplementary Table 17. Examining 
heterogeneity of associations across the five CH traits using forest 
plots (Extended Data Fig. 5a–e and Supplementary Tables 16 and 
18–21) revealed that in addition to 14q32.13-TCL1A, the lead alleles 
at 6q21-CD164 also had opposite effects on DNMT3A- versus 
TET2-CH. The lead variants at 6q21-CD164 and 5p13.3-LINC02064 
were associated with small, but not large, clones while the associa-
tion at 7q32.2-TMEM209 was highly specific to TET2-CH. The lead 
variants at 1q42.12-PARP1 and 3q25.33-SMC4 had greater effects on 
large than small clone CH. At the whole-genome level, we estimated 
the genetic correlation (rg) between DNMT3A-CH and TET2-CH 
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Fig. 3 | Cell-type-specific enrichment of the CH polygenic signal.  
a, Heritability enrichment of CH across histone marks profiled in ten 
cell-type groups. b, Heritability enrichment of CH across open chromatin 
regions identified by ATAC-seq in hematopoietic progenitor cells/lineages 
at different stages of differentiation. Partitioned heritability cell-type group 
analysis in the LDSC software was used to compute these enrichments 
and corresponding P values. The data underlying the figures are available 
in Supplementary Tables 14 and 15. CNS, central nervous system; GI, 
gastrointestinal; CLP, common lymphoid progenitor; CMP, common 
myeloid progenitor; MPP, multipotent progenitor; GMP, granulocyte/
macrophage progenitor; LMPP, lymphoid-primed multipotent progenitor; 
NK, natural killer cell; Mono, monocyte; Erythro, erythroid progenitor.
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as −0.48 (s.e. = 0.33, P = 0.15) and large and small clone CH as 0.37 
(s.e. = 0.18, P = 0.018) using high-definition likelihood inference30.

Finally, we also performed a focused scan to explore rare vari-
ant (MAF: 0.2–1%) associations with the three CH traits with larg-
est case numbers (overall, DNMT3A and small clone CH; each 
compared with 173,918 controls). This identified one new locus at 
22q12.1-CHEK2 where the T allele (frequency = 0.3%) of lead vari-
ant rs62237617 was perfectly correlated (r2 = 1) with the 1100delC 
CHEK2 protein-truncating allele (rs555607708) and conferred a 
large increase in risk of DNMT3A mutation-associated CH (OR = 4.1, 
95% confidence interval (95% CI): 2.7–6.1, P = 6.3 × 10−12).

Replication of genome-wide significant associations. Replication 
was undertaken using independent somatic mutation calling and 
germline association analysis pipelines on data from 221,285 
European-ancestry individuals in the UKB, for whom WES was 
performed after our UKB discovery set. We focused on DNMT3A 
and/or TET2 mutation carriers (n = 9,386) in the replication sam-
ple, stratified by these two genes and clone size, and evaluated the 
20 unique lead variants identified in the discovery GWAS (rep-
resenting 26 distinct overall/subtype-specific CH associations). 
Eighteen of 20 variants were replicated at P < 0.05, with 16 replicat-
ing at P < 0.0025 (accounting for testing 20 variants), and 19 show-
ing consistent directionality (Supplementary Table 22). Variants 
rs13130545 (overall CH; 4q35.1-ENPP6) and rs72755524 (small 
clone CH; 5p13.3-LINC02064) were not associated at P < 0.05 in 
replication analysis. Notably, we confirmed our observation that 
lead alleles at TCL1A and CD164 had opposite effects on DNMT3A- 
and TET2-CH, and replicated the CHEK2 association.

Blood chromosomal mosaicism and CH due to gene mutation. 
It is not known whether the germline genetic architecture under-
lying predisposition to CH due to individual gene mutations is 
similar to that underlying CH due to mosaic chromosomal altera-
tions (mCAs). We used data from a recent blood mCA GWAS31 to 
answer this and found that 13 of 19 unique lead variants identified 
for the five gene-mutant CH traits were associated with hemato-
logical mCA risk (P < 10−4; Supplementary Table 23). Notably, for 
our lead variants rs2296312 (14q32.13-TCL1A) and rs8088824 
(18q12.3-SETBP1), the alleles conferring increased DNMT3A-CH 
risk reduced hematological mCA risk (Supplementary Table 23). 
We found a correlation between overall CH and mCAs (rg = 0.44, 
s.e. = 0.21, P = 0.037) using LDSC23. This germline genetic correla-
tion together with enrichment of the CH GWAS signal in common 
lymphoid and myeloid progenitors (Fig. 3b) supports the recent 
finding that gene-mutant CH and mCAs have overlapping biology 
that leads them to confer risk of both lymphoid and myeloid malig-
nancies32. Further, a phenome-wide scan33,34 showed that several 
newly identified lead variants in our analyses were associated with 
multiple blood cell counts/traits (Supplementary Table 24).

Gene-level associations and network analyses. We used two 
complementary methods to perform gene-level association tests 
for each of our five CH traits: multi-marker analysis of genomic 
annotation (MAGMA) and a transcriptome-wide association 
study using blood-based cis gene expression quantitative trait 

locus (eQTL) data on 31,684 individuals35 and summary-based 
Mendelian randomization (SMR) coupled with the heteroge-
neity in dependent instruments (HEIDI) colocalization test36. 
Both approaches converged on a new locus at 6p21.1, associ-
ated at gene-level genome-wide significance (PMAGMA < 2.6 × 10−6, 
PSMR < 3.2 × 10−6) with DNMT3A-CH and marked by CRIP3 
(PMAGMA = 3.4 × 10−7, PSMR = 6.6 × 10−7; Fig. 5a and Supplementary 
Tables 25 and 26). While CRIP3 was the only 6p21.1 gene to reach 
gene-level genome-wide significance in both MAGMA and SMR, 
we did find subthreshold evidence for association between SRF or 
ZNF318 in the same region and DNMT3A-CH (Fig. 5a). Notably, 
SRF encodes the serum response factor known to regulate HSC 
adhesion37 while ZNF318 is an occasional CH somatic driver38. 
More globally, protein–protein interaction (PPI) network analy-
sis39, using proteins encoded by the 57 genes with PMAGMA < 0.001 in 
the overall CH analysis (Supplementary Table 25) as ‘seeds’, identi-
fied the largest subnetwork (Fig. 5b) as encompassing 13 of 57 pro-
teins with major hub nodes highlighted as TERT, PARP1, ATM and 
SMC4. This was consistent with the emerging theme that potential 
trait-associated genes at subthreshold GWAS loci are often part of 
interconnected biological networks40,41. The subthreshold genes 
identified by MAGMA that encoded protein hubs in this network 
included FANCF (DNA repair pathway) and PTCH1 (hedgehog 
signaling; Fig. 5b), both implicated in acute myeloid leukemia 
pathogenesis42,43, and GNAS, a CH somatic driver44. The CH sub-
network was significantly enriched for several pathways including 
DNA repair, cell cycle regulation, telomere maintenance and plate-
let homeostasis (Supplementary Table 27).

Functional target gene prioritization at CH risk loci. To prioritize 
putative functional target genes at Plead-variant < 5 × 10−8 loci identified 
by our GWAS of five CH traits, we combined gene-level genome-wide 
significant results from MAGMA and SMR (Supplementary Tables 
25 and 26) with five other lines of evidence: PPI network hub sta-
tus (Supplementary Table 28); variant-to-gene searches of Open 
Targets45 for lead variants; and overlap between fine-mapped vari-
ants46,47 (Supplementary Table 29) and (1) gene bodies, (2) regions 
with accessible chromatin correlated with nearby gene expression in 
hematopoietic progenitor cells25,48–50 and (3) missense variant anno-
tations51,52 (Supplementary Table 30). The genes nominated by the 
largest number of approaches, representing the most likely targets, 
were SMC4, ENPP6, TERT, CD164, ATM, PARP1, TCL1A, SETBP1 
and TMEM209 (Supplementary Table 31).

Among the newly identified loci, lead variant rs138994074 at 
1q42.12 was strongly correlated (r2 = 0.93) with rs1136410, a mis-
sense germline mutation in PARP1 (Supplementary Table 30) 
wherein the G allele, which is protective for DNMT3A-CH, leads 
to a missense variant (p.Val762Ala) in the catalytic domain of its 
protein product associated with reduced Poly(ADP-ribose) poly-
merase 1 activity53. While SETBP1 was the only gene nominated at 
18q12.3 (by only one approach, Open Targets45), its nomination is 
strengthened by the fact that somatic SETBP1 mutations are rec-
ognized drivers of myeloid malignancies54,55. We also evaluated 
the ‘druggability’ of the prioritized genes in the context of known 
therapeutics (yielding support for TERT and PARP1) and ongo-
ing drug development (yielding limited support for SMC4, ATM, 

Fig. 4 | Manhattan plots displaying genome-wide associations between common germline genetic variants and each of five CH traits. The y axes 
depict P values (−log10) for associations derived from the noninfinitesimal mixed model association test implemented in BOLT-LMM. The x axes depict 
chromosomal position on build 37 of the human genome (GRCh37). The dotted lines indicate the genome-wide significance threshold of P = 5 × 10−8. 
Known (previously published) and new loci are indicated by cytoband and target gene (based on the prioritization exercise described in the text). Since 
there were multiple independent loci at 5p15.33 (LD r2 < 0.05), we also label the 5p15.33 signals using the lead variant rs number for each signal. Our 
prioritization exercise was focused on protein coding genes near each lead variant and since there were no protein coding genes within 1 Mb of the lead 
variant at 5p13.3, we labeled this association using the nearest noncoding RNA. The CH traits corresponding to each Manhattan plot are: a, Overall CH.  
b, CH with mutant DNTM3A. c, CH with mutant TET2. d, CH with large clones. e, CH with small clones.
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CD164 and ENPP6) using the Open Targets56 and canSAR57 data-
bases (Supplementary Tables 32 and 33).

Mendelian randomization (MR) analyses. We integrated several 
large GWAS datasets (Supplementary Tables 34 and 35) and used 
inverse-variance-weighted (IVW) MR58 to appraise putative causes 
and consequences of CH. Genetically predicted smoking initiation59 
was associated with overall CH risk (OR = 1.15, 95% CI: 1.05–1.25, 
P = 2.2 × 10−3). Point estimates of effect sizes were consistent in direc-
tion across MR analyses for DNMT3A, TET2, and large and small 
clone CH (Fig. 6a and Supplementary Table 36), with the largest 
OR observed for large clone CH (OR = 1.24). We also appraised the 
roles of leukocyte telomere length (LTL)60, alcohol use59, adiposity61, 
genetic liability to T2D (ref. 62), circulating lipids63, blood-based 
epigenetic aging phenotypes64, blood cell counts/indices29 and cir-
culating cytokines/growth factors65 as potential risk factors for CH 
(Fig. 6 and Supplementary Tables 36–38 for full results, including 
sensitivity analyses). Genetically predicted longer LTL was associ-
ated with increased overall CH risk (OR = 1.56, 95% CI: 1.25–1.93, 
P = 5.7 × 10−5), and with DNMT3A-, TET2-, and large and small clone 
CH (Fig. 6b and Supplementary Table 36). Higher genetically pre-
dicted body mass index (BMI) was associated with increased risk of 
large clone CH (OR = 1.15, 95% CI: 1.01–1.31, P = 0.029). Genetically 
elevated circulating apolipoprotein B levels were associated with 
increased (OR = 1.18, 95% CI: 1.01–1.36, P = 0.032; Fig. 6c), whilst 
genetically predicted alcohol use was associated with decreased 
(OR = 0.46, 95% CI: 0.25–0.83, P = 0.010), risk of TET2-CH. Among 
cytokines, genetically elevated circulating macrophage inflammatory 
protein 1a, a regulator of myeloid differentiation and HSC num-
bers66, was associated with risk of DNMT3A-CH (OR = 1.13, 95% CI 
1.03–1.23, P = 7.1 × 10−3; Supplementary Table 38).

We used independent (r2 < 0.001) variants associated with overall, 
DNMT3A, TET2, and large and small clone CH at P < 10−5 as genetic 
instruments for each of these traits and assessed their associations with 
outcomes (Supplementary Tables 35, 39 and 40). Since more variants 
were available at P < 5 × 10−8 for overall and DNMT3A-CH, we also 
examined the consistency of associations when using genome-wide 
(GWS; P < 5 × 10−8) and sub-genome-wide significant (sub-GWS; 
P < 10−5) instruments for these two traits. Using the sub-GWS instru-
ment, genetic liability to overall CH had the largest associations  
(Fig. 7a) with myeloproliferative neoplasms (MPN) risk48 (OR = 1.99, 
95% CI: 1.23–3.23, P = 5.4 × 10−3), intrinsic epigenetic age accelera-
tion64 (which represents a core characteristic of HSCs67; beta = 0.39, 
95% CI: 0.08–0.69, P = 0.01) and the blood-based Hannum epi-
genetic clock64 (beta = 0.27, 95% CI: 0.04–0.49, P = 0.02) and even 
larger associations were observed when using the GWS instrument. 
Genetic liability to CH conferred increased risks of lung68, pros-
tate69, ovarian70, oral cavity/pharyngeal71 and endometrial cancers72  
(Fig. 7a,b and Supplementary Table 39). MR analyses did not sup-
port causal risk-conferring associations between genetic liability to 
CH and CAD73, ischemic stroke74 and heart failure75, with similar 
lack of evidence across gene-specific and clone size-specific CH, and 
GWS instrument analyses (Fig. 7a,b and Supplementary Table 39). 
However, we did uncover an association between genetic liability to 
overall CH or DNMT3A-CH and atrial fibrillation76 risk (OR = 1.09, 
95% CI: 1.04–1.15, P = 4.9 × 10−4 for overall CH with the GWS 
instrument; Supplementary Table 39). Among cytokines/growth fac-
tors65, genetic liability to overall CH was associated with elevated cir-
culating stem cell growth factor beta (beta = 0.19; 95% CI: 0.07–0.30, 
P = 1.1 × 10−3). MR analyses also revealed bidirectional associations 
between CH phenotypes and several blood cell counts/traits29, sug-
gesting a shared heritability (Figs. 6b and 7a,b and Supplementary 
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Fig. 5 | Gene-level association and PPI network analyses. a, Gene-level associations in the 6q21 region within 25 kb of CRIP3, that is, between GRCh37 
positions 43,017,448 and 43,526,535 on chromosome 6. The x axis lists all the genes in this region that were tested by both MAGMA and SMR. MAGMA 
uses a multiple linear principal components regression model while SMR is based on the Wald test. CRIP3 was the only gene located more than 1 Mb 
away from a GWAS-identified lead variant that was found to be associated with CH at gene-level genome-wide significance by both MAGMA and SMR. 
The y axis depicts the P value (−log10) for association in the MAGMA and SMR analyses. The gene-level genome-wide significance threshold in MAGMA 
(P = 2.6 × 10−6 after accounting for 19,064 genes tested) is indicated by the blue dashed line and in SMR (P = 3.2 × 10−6 after accounting for 15,672 
genes tested) by the orange dotted line. Both CRIP3 and SRF had SMR HEIDI P > 0.05 indicating colocalization of the GWAS and eQTL associations. The 
HEIDI test is a test of heterogeneity of Wald ratio estimates. b, Largest subnetwork of genes/proteins associated with overall CH risk identified by the 
NetworkAnalyst tool. NetworkAnalyst uses a ‘Walktrap’ random walks search algorithm to identify the largest first-order interaction network. All genes 
(n = 57) with PMAGMA < 0.001 in the overall CH MAGMA analysis were mapped to proteins and used as ‘seeds’ for network construction which was done 
by integrating high-confidence PPIs from the STRING database. The largest subnetwork constructed contained 13 of the 57 seed proteins and included 
210 nodes and 231 edges. The colored nodes indicate seed proteins that interact with at least two other proteins in this subnetwork with the intensity of 
redness increasing with number of interacting proteins. Seed proteins that interact with six or more other proteins in the subnetwork are named above 
their corresponding node.
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Tables 37 and 39). We found little evidence to support an associa-
tion between genetic liability to CH and LTL (Supplementary Table 
39). Finally, we also performed an MR-PheWAS evaluating asso-
ciations between genetic liability to overall or DNMT3A-CH and 
1,434 disease/trait outcomes in the UKB. Reassuringly, the strongest  

associations involved blood cell counts/traits and hematopoietic 
cancers, but we also uncovered new associations such as with malig-
nant skin cancers (Supplementary Tables 41 and 42). Results of MR 
sensitivity analyses using the weighted median77 and MR-Egger78 
methods are provided in Supplementary Tables 36–42.
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Fig. 6 | IVW MR forest plots with CH traits as outcomes. a–c, ORs for CH risk are represented as per (1) standard deviation unit for continuous exposures 
(alcohol use in drinks per week, BMI, waist-to-hip ratio adjusted for BMI (WHRadjBMI) (a); LTL, two epigenetic aging traits, and red cell, white cell and 
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units are provided in Supplementary Table 34. Symbols represent OR markers, and OR marker symbols with corresponding P < 0.05 are represented 
by filled circles. Error bars represent 95% CIs. Sample sizes for the smoking, alcohol, BMI, WHRadjBMI, T2D, apolipoproteins B and A-I, LDL, HDL and 
triglycerides analyses are provided in Supplementary Table 34. Sample sizes for the LTL, IEAA, Hannum and three blood cell count analyses are provided 
in Supplementary Table 35. Full results, including from sensitivity analyses, are presented in Supplementary Tables 36–38. WHRadjBMI, waist-to-hip ratio 
adjusted for BMI; LDL, low-density lipoprotein cholesterol; IEAA, intrinsic epigenetic age acceleration.
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Discussion
We present an observational and genetic epidemiological analysis of 
CH in 200,453 individuals in the UKB and report a series of insights 
into the causes and consequences of this common aging-associated 
phenomenon. We increase the number of germline associations 
with CH in European-ancestry populations from 4 (ref. 17) to 14, 
reveal heterogeneity of associations by CH driver gene and clone 
size, and implicate putative new CH susceptibility genes, including  

CD164, ATM and SETBP1, through functional annotation. We also 
demonstrate that the CH GWAS signal is enriched at epigenetic marks 
specific to the hematopoietic system, particularly in open chromatin 
regions of hematopoietic stem/progenitor cells. The robustness of our 
GWAS is supported by replication of the vast majority of associations 
in an additional set of 221,285 individuals from the UKB and further 
affirmed by our replication of previous European-ancestry-specific 
CH associations17, the consistency of our estimates of CH heritability 
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provided in Supplementary Table 35. Full results, including from sensitivity analyses, are presented in Supplementary Tables 39 and 40. IS, ischemic stroke.

NATuRe GeNeTICS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Articles NAtUrE GENEtICS

with previous reports17,79 and the fact that many of our lead variants 
are associated with related traits29,31,60,80.

At 14q32.13-TCL1A, we replicate the reported association with 
DNMT3A-CH (ref. 17) and identify a new genome-wide significant 
association with TET2-CH. Strikingly, however, we found that the 
association operates in the opposite direction for TET2-CH, ver-
sus DNMT3A-CH. This inverse relationship, also supported by 
our finding of a suggestive negative genetic correlation between 
TET2- and DNMT3A-CH, is tantalizing in light of recent observa-
tions that ageing has different effects on the dynamics of these two 
forms of CH, resulting in TET2-CH becoming more prevalent than 
DNMT3A-CH in those over 80 yr (refs. 20,81). Also notable in this light 
is the finding of an association at 6q21-CD164 with DNMT3A-CH, 
and a trend in the opposite direction for TET2-CH that was con-
firmed in the replication analysis. As CD164 is expressed in the ear-
liest HSCs82 and encodes a key regulator of HSC adhesion83,84, this 
proposes that HSC migration and homing may play important roles 
in CH pathogenesis. The reciprocal relationship of both TCL1A and 
CD164 with the two main CH subtypes suggests that their expres-
sion must be tightly regulated to prevent the development of one or 
other CH subtype, making these loci important targets for hijack 
by the effects of somatic mutations. In fact, a recent study85 sug-
gests that this may be how TET2 and ASXL1 mutations interact with 
a TCL1A promoter variant associated with clonal expansion rate. 
TCL1A is not expressed in normal or DNMT3A-mutated HSCs and 
the authors show that the locus becomes susceptible to activation 
in the presence of TET2 or ASXL1 mutations only when harboring 
the reference allele at the promoter variant, leading to faster clonal 
expansion. This type of interaction may operate for CD164 and 
other CH risk loci, or alternative models of interaction between the 
germline and somatic genome may exist.

New CH risk loci included the PARP1 coding variant 
rs1136410, where the G allele is protective for DNMT3A-CH and 
associated with reduced catalytic activity53 suggesting that this 
most common form of CH may be vulnerable to PARP inhibition, 
in keeping with the observed synergy between PARP and DNMT 
inhibitors86. We also identified three lead variants at the TERT 
locus for which CH risk alleles were associated with longer LTL, a 
finding corroborated by our MR results linking increased LTL to 
CH. Interestingly, a recent study found deleterious rare germline 
TERT variants associated with shorter telomeres in patients with 
myelodysplastic syndromes87. However, compared with conven-
tional myelodysplastic syndromes, these cases displayed a pau-
city of somatic mutations in DNMT3A (2 of 41) and TET2 (3 of 
41 cases), suggesting that evolutionary paths may differ between 
cases with long versus short telomeres.

The rich phenotypic data captured by the UKB, coupled with our 
genetic analysis of CH and external GWAS datasets, enabled us to 
explore associations of CH using multivariable regression and inter-
rogate, at scale, potential causal relationships between CH and its 
putative risk factors and consequences using MR. This highlighted 
that smoking and longer telomere length are causal risk factors for 
CH. These associations were valid across multiple CH subtypes and, 
in the case of smoking, corroborated by observational estimates. 
We also reveal that not only is genetic predisposition to CH caus-
ally associated with MPN risk, but it also increases the risk of lung, 
prostate, ovarian, oral/pharyngeal and endometrial cancers. In 
these analyses, the use of two-sample MR protected against poten-
tial reverse causality arising from cancer therapy-induced selection 
pressure on hematopoietic clones88. These MR results suggest that 
genetic liability to CH may be a biomarker for development of can-
cer elsewhere in the body, analogous to the link between genetic pre-
disposition to Y chromosome loss in blood and solid tumor risk89.

We investigated the recently identified association of CH with 
blood-based epigenetic clocks90, using bidirectional MR, and show 
that this association is likely to be causal in the direction from CH to 

epigenetic age acceleration. We also showed that genetic predisposi-
tion to CH was associated with elevated circulating levels of stem 
cell growth factor beta, a secreted sulfated glycoprotein that regu-
lates primitive hematopoietic progenitor cells91. Finally, we unrav-
eled a previously unreported association between genetic liability 
to CH and atrial fibrillation risk, which was also supported by our 
observational analysis. However, unlike previous reports based on 
smaller sample sizes5,10,22, we did not find evidence in observational 
and MR analyses to support an association between CH and CAD 
or ischemic stroke. However, our MR analyses indicated that higher 
BMI and circulating apolipoprotein B levels were associated with 
TET2 and large clone CH risks, respectively, with apolipoprotein 
B being the key causal lipid risk factor for CAD63,92. We also dem-
onstrated the impact of age, in particular, as a strong confounder 
of the CH–CAD/ischemic stroke associations. These results raise 
the possibility that reported associations of CH with CAD/stroke 
risks may suffer from residual confounding. Moreover, many of the 
cohorts that reported these associations are enriched in participants 
at high cardiovascular risk10, in contrast to the UKB, where partici-
pants may be healthier, and potentially have lower epigenetic aging. 
Recent findings suggest that CH is associated with CAD/stroke only 
on a background of epigenetic aging90, offering a plausible mecha-
nistic explanation for the absence of an association in our study.

Collectively, our findings substantially illuminate the landscape 
of inherited susceptibility to CH and provide insights into the 
causes and consequences of CH with implications for human health 
and ageing.
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Methods
Study population and WES data. The UKB resource was approved by the North 
West Multi-centre Research Ethics Committee under reference number 21/NW/0157 
and all participants provided written, informed consent to participate. Participants 
in the UKB are volunteers and not compensated for participation. Data from the 
UKB resource were accessed under approved application numbers 56844, 29202 and 
26041 for this study. The UKB is a prospective longitudinal study containing in-depth 
genetic and health information from half a million UK participants. For this study, 
we have selected 200,453 individuals (200k) who had WES data available (age range: 
38–72, median age: 58; 55% females). WES was generated in two batches, the first 
of approximately 50,000 samples (50k)93 and the second comprising an additional 
150,000 samples (150k)19. Exomes were captured using the IDT xGen Exome 
Research Panel v.1.0 including supplemental probes; a different IDT v.1.0 oligo lot 
was used for each batch. Multiplexed samples were sequenced with dual-indexed 
75 × 75-base-pair paired-end reads on the Illumina NovaSeq 6000 platform using S2 
(50k samples) and S4 (150k samples) flow cells. The 50k samples were first computed 
using FE protocol and reprocessed later to match the second batch of 150k sequences 
which were processed using a new improved unified OQFE pipeline. As the initial 
50k samples were sequenced on S2 flow cells and with a different IDT v.1.0 oligo 
lot from the remaining 150k samples, which were sequenced on S4 flow cells, we 
included the WES batch as a covariate in downstream analyses.

Sequence data processing, CH mutation calling and filtering. CRAM files 
generated by the OQFE pipeline were obtained from UKB (Fields 23143-23144). 
Variant calling on WES data from 200,453 individuals was performed using Mutect2, 
Genome Analysis Toolkit (GATK) v.4.1.8.1 (ref. 94). Briefly, Mutect2 was run in 
‘tumor-only’ mode with default parameters, over the exons of 43 genes previously 
associated with CH (Supplementary Table 1). To filter out potential germline variants 
we used a population reference of germline variants generated from the 1000 
Genomes Project (1000GP)95 and the Genome Aggregation Database (gnomAD)96. 
All resources were obtained from the GATK Best practices repository (gs://
gatk-best-practices/somatic-hg38). Raw variants called by Mutect2 were filtered out 
with FilterMutectCalls using the estimated prior probability of a reading orientation 
artifact generated by LearnReadOrientationModel (GATK v.4.1.8.1). Putative variants 
flagged as ‘PASS’ using FilterMutectCalls or flagged as ‘germline’ if present at least 
two times with the ‘PASS’ flag in other samples were selected for filtering. Gene 
annotation was performed using Ensembl Variant Effect Predictor (VEP) (v.102)97. 
We required variants with a minimum number of alternate reads of 2, evidence of 
the variant on both forward and reverse strands, a minimum depth of 7 reads for 
single nucleotide variants (SNVs) and 10 reads for short indels and substitutions, 
and a MAF lower than 0.001 (according to 1000GP phase 3 and gnomAD r2.1). For 
new variants, not previously described in the Catalogue of Somatic Mutations in 
Cancer (COSMIC; v.91)98 nor in the Database of Single Nucleotide Polymorphisms 
(dbSNP; build 153)99, we used a minimum allele count per variant of 4, and a 
MAF lower than 5 × 10−5. From resulting variants, we selected those that: (1) are 
included in a list of recurring hotspot mutations associated with CH and myeloid 
cancer (Supplementary Table 2); (2) have been reported as somatic mutations in 
hematological cancers at least seven times in COSMIC; or (3) met the inclusion 
criteria of a predefined list of putative CH variants17,79 (Supplementary Table 3). We 
included previous variants flagged as germline by FilterMutectCalls if: (1) the number 
of cases in the cohort flagged as germline was lower than the ones flagged as PASS; 
and (2) at least one of the cases had a P < 0.001 for a one-sided exact binomial test, 
where the null hypothesis was that the number of alternative reads supporting the 
mutation was 50% of the total number of reads (95% for copy number equal to one), 
except for hotspot mutations which were all included. For the final list, we excluded 
all variants not present in COSMIC or in the list of hotspots that had a MAF equal 
to or higher than 5 × 10−5 and either the mean VAF of all cases was higher than 
0.2 or the maximum VAF was lower than 0.1. Frameshift, nonsense and splice-site 
mutations not present in COSMIC or in the hotspot list were further excluded if for 
each variant none of the cases had a P < 0.001 for a one-sided exact binomial test. A 
complete list of filtered variants is provided in Supplementary Table 4.

Trait selection and modeling for observational analyses. Phenotypes were 
downloaded in December of 2020 and individual traits were pulled out from the 
whole phenotype file. Cancer, metabolic and CVD traits were generated, combining 
individual traits and diagnosis dates based on disease definitions (Supplementary 
Table 9). For each definition of disease, the first diagnosis event that occurred in each 
trait was selected. Baseline was defined as the date of sample collection when the 
individuals attended the assessment centers. The prevalent cases are those identified 
before the baseline, while incident cases were defined as the events that occurred 
after the baseline. Unless specified, all regression models included age, sex, smoking 
status, WES batch and the first ten ancestry principal components as covariates 
and all analyses were adjusted for multiple comparisons using the false discovery 
rate (FDR) computed by the Benjamin–Hochberg procedure implemented in the 
p.adjust function (R stats package v.4.0.2). Blood cell counts and biochemical traits 
were log10 transformed and analyzed using a logistic regression model with overall 
and gene-specific CH as outcomes, including the assessment center as covariate and, 
in the case of cholesterol and cholesterol species, the use of cholesterol-lowering 
medication as an additional covariate. Individuals with myeloid malignancies or 

hematological neoplasms at baseline (that is, with a cancer diagnosis date before 
the date they attended the assessment centers) were excluded from the analysis. For 
cancer, CVD and death risk, we performed a time-to-event regression analysis. In 
the case of cancer and CVD, we performed a competing risk analysis, using the date 
of death by other cause as the competing event, while for the risk of death we used 
the Cox proportional hazards model. The cancer/CVD/death event was used as 
an outcome and CH was considered as the exposure in these analyses. Individuals 
without the event who died before the end of the follow-up were censored at the 
time of death, while the rest were censored at the end of the follow-up. For CVD 
and death risk analyses, we also included BMI, high-density lipoprotein cholesterol, 
low-density lipoprotein cholesterol, triglycerides, T2D status and hypertension 
status as covariates. Individuals with myeloid or other malignant neoplasms at 
baseline were excluded from all aforementioned analyses. The proportional hazards 
assumption for the Cox and competing risk models was assessed by examining 
the Schoenfeld residuals. For the phenome-wide association analysis between 
International Statistical Classification of Diseases and Related Health Problems 10th 
Revision (ICD-10) codes as outcomes and CH status, logistic regression models 
were used including age, sex, WES batch and the first ten genetic ancestry principal 
components as covariates. Analyses were performed over 11,787 selected ICD-10 
codes corresponding to disease conditions (A to N), symptoms, signs, and abnormal 
clinical and laboratory findings (R), and factors influencing health status (Z). All 
analyses were performed using glm (R stats package v.4.0.2), coxph (R survival 
package v.3.2-11) and crr (R cmprsk package v.2.2-10) functions.

Genome-wide association analyses. Germline genotype data used were from the 
UKB release that contained the full set of variants imputed into the Haplotype 
Reference Consortium100 and UK10K + 1000GP (ref. 95) reference panels and 
genotyped on the UK BiLEVE Axiom Array or UKB Axiom Array101. Derivation 
of the analytic sample for UKB individuals of European ancestries followed the 
QC protocol of Astle et al.29 and included the following steps: after filtering genetic 
variants (call rate ≥ 99%, imputation quality info score > 0.9, Hardy–Weinberg 
equilibrium P ≥ 10−5) and participants (removal of genetic sex mismatches), we 
excluded participants having non-European ancestries (self-report or inferred 
by genetics) or excess heterozygosity (>3 s.d. from the mean), and included only 
one of each set of related participants (third-degree relatives or closer). After QC, 
we were left with 10,203 individuals with CH and 173,918 individuals without 
CH. The subset with CH included 5,185 and 2,041 individuals with DNMT3A- 
and TET2-mutant CH, respectively, and 4,049 and 6,154 individuals with large 
(VAF ≥ 0.1) and small (VAF < 0.1) clone size CH, respectively. Association analyses 
were performed for autosomal and X chromosomal variants using noninfinitesimal 
linear mixed models implemented in BOLT-LMM102 (v.2.3.6) with age at baseline, 
sex and first ten genetic principal components included as covariates.

Statistically independent lead variants for each CH phenotype were defined 
using LD-based clumping with an r2 threshold of 0.05 applied across all genotyped 
and imputed variants, with P < 5 × 10−8, imputation quality score > 0.6 and 
MAF > 1%. This was implemented using the FUMA pipeline (v.1.3.6b) (ref. 103). 
For the rare variant association scan, we used more stringent cut-offs of P < 10−9 
and imputation quality score > 0.8 to define lead variants but did not require 
LD-clumping since only one such association was identified. Approximate 
conditional analysis conditioning on the common (MAF > 1%) lead variants was 
performed using the --cojo-cond flag in the Genome-wide Complex Trait Analysis 
(GCTA) v.1.93 tool (refs. 27,104).

We also evaluated associations of the lead variants for overall CH risk in the 
505 individuals with CH and 11,893 controls (retained after the QC steps described 
above), comprising the ancestrally diverse (non-European) subcohort of the 200k 
UKB cohort, using logistic regression and adjusting for age, sex, WES batch and 40 
genetic ancestry principal components.

Replication of genome-wide significant associations. Replication analysis 
was performed using 221,285 unrelated UKB individuals of European ancestry 
(age range: 39–73, mean age: 57; 53% females), for whom WES was performed 
subsequent to the initial 200k, using the same protocol. Alignment to the 
GRCh38 genome reference with Illumina DRAGEN Bio-IT Platform Germline 
Pipeline v.3.0.7 and QC were performed as detailed by Wang et al.105. Somatic 
variant calling was performed with GATK’s Mutect2 (v.4.2.2.0) using a panel of 
normals to remove recurrent artifacts, and subsequent filtering was performed 
with FilterMutectCalls, including the filtering of read orientation artifacts using 
priors generated with LearnReadOrientationModel. Putative somatic variants 
were identified from Mutect2 ‘PASS’ calls in DNMT3A and TET2 based on (1) 
matching the list of putative somatic mutations identified in the discovery cohort, 
or (2) any DNMT3A or TET2 protein-truncating variants as predefined by Wang 
et al.105. Sample sizes for DNMT3A-, TET2- and large and small clone DNMT3A- or 
TET2-mutant CH are provided in Supplementary Table 22. Replication association 
statistics were calculated on the 221,285 replication exomes using the imputed 
genotype data with logistic regression, adopting age, sex and the first four genetic 
ancestry principal components as covariates.

Heritability, cell-type enrichment and genetic correlation. We used LDSC 
(v.1.0.1)23 to estimate the narrow-sense heritability of CH on the liability scale 
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assuming the population prevalence of CH to be 10% (based on the prevalence 
of CH in the UKB ‘200k’ cohort as shown in Fig. 1b) and constraining the LDSC 
intercept to 1. The intercept, which in its unconstrained form protects from bias 
due to population stratification, was constrained to 1 to provide more precise 
estimates given that there was little evidence of inflation in test statistics due to 
population structure in unconstrained analysis (unconstrained intercept estimated 
as 1.009 (s.e. = 0.0067) and lambda genomic control factor of 0.999). We used 
the pre-computed 1000 Genomes phase 3 European ancestry reference panel LD 
score dataset for heritability estimation. We used the same LD scores and the 
--rg flag in LDSC to estimate the genetic correlation between the CH and mCA 
GWAS summary statistics31. Cell-type group partitioned heritability analysis was 
performed using LD scores partitioned across 220 cell-type-specific annotations 
that were divided into 10 groups24: central nervous system, cardiovascular, kidney, 
adrenal/pancreas, gastrointestinal, connective/bone, immune/hematopoietic, 
skeletal muscle, liver and other. Each of the ten groups contained cell-type-specific 
annotations for four histone marks: H3K9ac, H3K27ac, H3K4me1 and H3K4me3 
(ref. 24). We also used LD scores annotated based on open chromatin state (assay 
for transposase-accessible chromatin using sequencing (ATAC-seq)) profiling by 
Corces et al.25,26 in various hematopoietic progenitor cells and lineages at different 
stages of differentiation. To estimate the genetic correlation between DNMT3A- 
and TET2-CH and between large and small clone CH we used the high-definition 
likelihood (HDL; v.1.4.0)30 inference approach to improve power given the low 
sample size in each subtype-specific CH GWAS.

Gene-level association and network analyses. We undertook genome-wide 
gene-level association analyses using two complementary approaches. First, we 
used MAGMA (v.1.08 implemented in FUMA v.1.3.6b) which involves mapping 
germline variants to the genes they overlap, accounting for LD between variants 
and performing a statistical multi-marker association test106. Second, we performed 
a transcriptome-wide association study using blood-based cis gene eQTL data 
on 31,684 individuals from the eQTLGen consortium35 and SMR coupled with 
the HEIDI colocalization test to identify germline genetic associations with CH 
risk mediated via the transcriptome36. The gene-level genome-wide significance 
threshold in the MAGMA analyses was set at P = 2.6 × 10−6 to account for testing 
19,064 genes and for SMR was set at P = 3.2 × 10−6 after adjustment for testing 
15,672 genes. Further, only genes with SMR P < 3.2 × 10−6 and HEIDI P > 0.05 were 
declared genome-wide significant in the SMR analyses since the HEIDI P > 0.05 
strongly suggests colocalization of the GWAS and eQTL signals for a given gene36. 
NetworkAnalyst 3.0 (ref. 39) was used for network analysis. All genes with P < 10−3 
in each MAGMA analysis for overall, DNMT3A- and TET2-mutant, and large and 
small clone CH were used as input. The protein–protein interactome selected was 
STRING v.10 (ref. 107) with the recommended parameters (confidence score cut-off 
of 900 and requirement for experimental evidence to support the PPI). The largest 
possible network was constructed from the seed genes/proteins and the interactome 
proteins39. Hub nodes were defined as nodes with degree centrality ≥ 10 (that is, 
a node with at least 10 edges or connections to other proteins in the network as a 
measure of its importance in the network and consequently its biology). Pathway 
analysis of this largest network was conducted using the enrichment tool built into 
NetworkAnalyst and with the Reactome pathway repository therein108.

Fine-mapping and target gene prioritization. We fine-mapped the lead variant 
signals identified by the FUMA LD-clumping pipeline using the Probabilistic 
Identification of Causal Single Nucleotide Polymorphisms (PICS2; v.2.1.1) 
algorithm46,47 to identify candidate causal variants most likely to underpin each 
association. The PICS2 algorithm computes the likelihood that each variant in 
LD with the lead variant is the true causal variant in the region by leveraging 
the fact that for variants associated merely due to LD, the strength of association 
scales asymptotically with correlation to the true causal variant46. We only 
retained variants with a PICS2 probability of 1% or more in our final list of 
fine-mapped candidate causal variants. We overlapped these fine-mapped variants 
with gene body annotations48 using GENCODE release 33 (ref. 109) (build 37) 
annotations after removing ribosomal protein genes. Fine-mapped variants 
were also overlapped with ATAC-seq peaks across 16 hematopoietic progenitor 
cell populations and ATAC-RNA count correlations calculated using Pearson 
coefficients for hematopoietic progenitor cell RNA counts of genes within 1 Mb 
of the ATAC peaks and these were used to identify putative target genes of 
fine-mapped variants that overlapped ATAC-seq peaks25,48–50. We also looked up the 
SIFT51 and PolyPhen52 scores for these fine-mapped variants using the SNPnexus 
v.4 annotation tool110 to identify coding variants with predicted functional 
consequences. Finally, we used the Open Targets Genetics resource45 to identify the 
most likely target gene of the lead variant at each locus as per Open Targets and 
used this in our omnibus target gene prioritization scheme described below.

To prioritize putative target genes at the Plead-variant < 5 × 10−8 loci identified by 
our GWAS of overall CH, DNTM3A-CH, TET2-CH and large/small clone size CH, 
we combined gene-level genome-wide significant results from (1) MAGMA and 
(2) SMR with (3) PPI network hub status of the gene, (4) variant-to-gene searches 
of the Open Targets database for lead variants, and overlap between fine-mapped 
variants and (5) gene bodies, (6) regions with accessible chromatin (ATAC-seq 
peaks) across 16 hematopoietic progenitor cell populations that were also correlated 

with nearby gene expression (RNA sequencing) in the same cell populations and 
(7) missense variant annotations from SIFT and PolyPhen. Genes nominated by at 
least two of the seven approaches were listed (except where only one of the seven 
methods nominated a single gene in a region in which case that gene was listed) 
and the genes nominated by the largest number of approaches represented the most 
likely targets at each locus. We also evaluated the ‘druggability’ of the prioritized 
functional target genes in the context of known therapeutics and ongoing drug 
development using the Open Targets Platform56 and canSAR57 v.1.5.0 databases. 
The database canSAR provides chemistry-based (assesses the likely ‘ligandability’ of 
a protein based on the chemical properties of compounds tested against the protein 
itself and/or its homologs) and antibody-based (assesses if a target is potentially 
suitable for antibody therapy) predictions.

Phenome-wide association scan for lead variants. We used PhenoScanner V2 
(refs. 33,34) with catalog set to ‘diseases & traits’, P value set to ‘5E-8’, proxies set 
to ‘EUR’ and r2 set to ‘0.8’ to search for published phenome-wide associations 
between our lead variants or variants in strong LD (r2 > 0.8) with the lead variants 
and other diseases and traits.

MR analyses. MR111,112 uses germline variants as instrumental variables to proxy 
an exposure or potential risk factor and evaluate evidence for a causal effect of the 
exposure or potential risk factor on an outcome. Due to the random segregation 
and independent assortment of alleles at meiosis, MR estimates are less susceptible 
to bias from confounding factors as compared with conventional observational 
epidemiological studies. As the germline genome cannot be influenced by the 
environment after conception or by preclinical disease, MR estimates are also less 
susceptible to bias due to reverse causation. MR estimates represent the association 
between genetically predicted levels of exposures or risk factors and outcomes, 
as compared with conventional observational epidemiological estimates, which 
represent direct associations of the exposure or risk factor levels with outcomes. 
Effect allele harmonization across GWAS summary statistics datasets followed by 
MR analyses were performed using the TwoSampleMR v.0.5.6 R package58. The 
CH phenotypes were considered as both exposures (to identify consequences 
of genetic liability to CH) and outcomes (to identify risk factors for CH). When 
considering CH phenotypes as outcomes, germline variants associated with putative 
risk factors or exposures at P < 5 × 10−8 were used as genetic instruments for the 
risk factors/exposures, except for the appraisal of circulating cytokines and growth 
factors65 wherein variants associated with cytokines/growth factors at P < 10−5 
were used as instruments. IVW analysis113 was the primary analytic approach with 
pleiotropy-robust sensitivity analyses carried out using the MR-Egger78 and weighted 
median77 methods. A full list of external GWAS data sources used for MR analyses 
is provided in Supplementary Tables 30 and 31. We also conducted an MR-PheWAS 
evaluating overall CH and DNMT3A-CH as exposures (using variants associated 
with these at P < 10−5) and 1,434 disease and trait outcomes in the UKB data using 
summary genetic association statistics for the outcomes that were generated by the 
Neale lab (http://www.nealelab.is/uk-biobank) and accessed via the TwoSampleMR 
v.0.5.6 R package and the Integrative Epidemiology Unit (IEU) OpenGWAS project 
portal114. FDR control was applied to the MR-PheWAS IVW analysis P values.

Statistics and reproducibility. No statistical method was used to predetermine 
sample size. The experiments were not randomized and investigators were not 
blinded during the experiments and outcome assessment. Participants were 
excluded from the GWAS due to genetic sex mismatch, excess heterozygosity 
(>3 s.d. from the mean) and relatedness (only one of each set of participants who 
were third-degree relatives or closer were retained). To summarize, our study 
design included observational genomic analyses of CH in 200,453 individuals 
across ancestries, genome-wide association and post-GWAS analyses for five 
CH traits (overall, DNMT3A, TET2, large clone and small clone CH) in 184,121 
individuals of European ancestry, followed by trans-ancestry genetic association 
analyses in 12,398 individuals, and replication genetic association analyses in an 
additional 221,285 individuals of European ancestry—all from the UKB.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Summary statistics for the overall and subtype-specific CH genome-wide 
association analyses reported here have been made publicly available at https://
doi.org/10.5281/zenodo.5893861. They can also be downloaded from the 
GWAS Catalog (https://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
GCST90102001-GCST90103000/) using the study accession numbers 
GCST90102618 (overall CH; https://www.ebi.ac.uk/gwas/studies/GCST90102618), 
GCST90102619 (DNMT3A-CH; https://www.ebi.ac.uk/gwas/studies/
GCST90102619), GCST90102620 (TET2-CH; https://www.ebi.ac.uk/gwas/studies/
GCST90102620), GCST90102621 (small clone CH; https://www.ebi.ac.uk/gwas/
studies/GCST90102621) and GCST90102622 (large clone CH; https://www.ebi.
ac.uk/gwas/studies/GCST90102622). Individual-level UK Biobank data can be 
requested via application to the UK Biobank (https://www.ukbiobank.ac.uk). The 
CH call set has been returned to the UK Biobank to enable individual-level data 
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linkage for approved UK Biobank applications. Pre-computed 1000 Genomes 
phase 3 European ancestry reference panel and cell-type group LD scores used 
for heritability estimation and cell-type group partitioned heritability analysis, 
respectively, can be downloaded from https://alkesgroup.broadinstitute.org/
LDSCORE. The STRING protein–protein interaction and Reactome pathway 
databases are available from, and were accessed via, the NetworkAnalyst 3.0 
platform (https://www.networkanalyst.ca) and are also downloadable separately 
from http://version10.string-db.org/cgi/download.pl for STRING v.10 and 
https://reactome.org/download-data for Reactome. cis-expression quantitative 
trait locus data from the eQTLGen consortium used for the SMR analyses can be 
downloaded from https://www.eqtlgen.org/cis-eqtls.html. All summary genetic 
association statistics datasets used in the Mendelian randomization (MR) and 
MR-phenome-wide association analyses are publicly available at the Integrative 
Epidemiology Unit (IEU) OpenGWAS project portal (https://gwas.mrcieu.ac.uk/
datasets) and can be accessed by entering the identifiers provided in the ‘id/link’ 
column in Supplementary Table 35 and the ‘id.outcome’ column in Supplementary 
Tables 41 and 42 in the ‘GWAS ID’ field at https://gwas.mrcieu.ac.uk/datasets.

Code availability
We used publicly available software and web-based tools for analyses: somatic 
variant calling was performed using Mutect2 GATK v.4.1.8.1 for the discovery 
whole-exome sequences and using Mutect2 GATK v.4.2.2.0 for the replication 
whole-exome sequences (https://github.com/broadinstitute/gatk/releases). 
Genome-wide association analyses were conducted using BOLT-LMM v.2.3.6 
(https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html). 
LDSC v.1.0.1 (https://github.com/bulik/ldsc) was used for heritability estimation 
and cell-type-specific enrichment analyses. Genetic correlations were computed 
using HDL v.1.4.0 (https://github.com/zhenin/HDL). LD-clumping was undertaken 
using FUMA v.1.3.6b (https://fuma.ctglab.nl). Conditional analysis was carried out 
using the GCTA-COJO tool (https://yanglab.westlake.edu.cn/software/gcta/#COJO) 
in GCTA v.1.93 (https://yanglab.westlake.edu.cn/software/gcta/#Download). 
Gene-level association analyses were performed using the MAGMA v.1.08 tool 
(https://ctg.cncr.nl/software/magma) in FUMA v.1.3.6b (https://fuma.ctglab.nl). 
Transcriptome-wide association analyses were conducted using SMR v.1.03 (https://
yanglab.westlake.edu.cn/software/smr/#Download). Protein–protein interaction 
network and pathway analyses were performed using NetworkAnalyst v.3.0 (https://
www.networkanalyst.ca). Fine-mapping was conducted using PICS2 v.2.1.1 (https://
pics2.ucsf.edu). Fine-mapped variant-gene body overlap and fine-mapped variant 
ATAC-seq peak overlap and ATAC-RNA count correlations were performed using 
the scripts at https://github.com/sankaranlab/mpn-gwas. SIFT and PolyPhen 
scores were obtained via the SNPnexus v.4 (https://snp-nexus.org). Lead variants 
were searched on the Open Targets Genetics (https://genetics.opentargets.org) 
and PhenoScanner V2 (http://www.phenoscanner.medschl.cam.ac.uk) platforms. 
Druggability of prioritized functional target gene products was evaluated using 
the Open Targets platform (https://platform.opentargets.org) and canSAR v.1.5.0 
(https://cansarblack.icr.ac.uk). For the observational analyses, we used the glm and 
p.adjust (in the R stats package v.4.0.2), coxph (in the R survival package v.3.2-11) 
and crr (in the R cmprsk package v.2.2-10) functions, all implemented in R v.4.0.2. 
For the Mendelian randomization analyses, we used the TwoSampleMR v.0.5.6R 
package implemented in R v.4.0.5. Custom code was written for variant calling (and 
made available as a Nextflow v.20.07.1 pipeline) and Mendelian randomization and 
these scripts are available at https://doi.org/10.5281/zenodo.6419042 (https://github.
com/siddhartha-kar/clonal-hematopoiesis).

References
 93. Van Hout, C. V. et al. Exome sequencing and characterization of 49,960 

individuals in the UK Biobank. Nature 586, 749–756 (2020).
 94. Auwera, G. A. V. de & O’Connor, B. D. Genomics in the Cloud: using 

Docker, GATK, and WDL in Terra (O’Reilly, 2020).
 95. 1000 Genomes Project Consortium et al. A global reference for human 

genetic variation. Nature 526, 68–74 (2015).
 96. Karczewski, K. J. et al. The mutational constraint spectrum quantified from 

variation in 141,456 humans. Nature 581, 434–443 (2020).
 97. McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 

122 (2016).
 98. Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. 

Nucleic Acids Res. 47, D941–D947 (2019).
 99. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic 

Acids Res. 29, 308–311 (2001).
 100. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype 

imputation. Nat. Genet. 48, 1279–1283 (2016).
 101. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and 

genomic data. Nature 562, 203–209 (2018).
 102. Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases 

association power in large cohorts. Nat. Genet. 47, 284–290 (2015).
 103. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional 

mapping and annotation of genetic associations with FUMA. Nat. Commun. 
8, 1826 (2017).

 104. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for 
genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

 105. Wang, Q. et al. Rare variant contribution to human disease in 281,104 UK 
Biobank exomes. Nature 597, 527–532 (2021).

 106. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: 
generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, 
e1004219 (2015).

 107. Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, 
integrated over the tree of life. Nucleic Acids Res. 43, D447–−D452 (2015).

 108. Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, 
D498–D503 (2020).

 109. Frankish, A. et al. GENCODE reference annotation for the human and 
mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

 110. Oscanoa, J. et al. SNPnexus: a web server for functional annotation of 
human genome sequence variation (2020 update). Nucleic Acids Res. 48, 
W185–W192 (2020).

 111. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors 
for causal inference in epidemiological studies. Hum. Mol. Genet. 23, 
R89–R98 (2014).

 112. Davies, N. M., Holmes, M. V. & Davey Smith, G. Reading Mendelian 
randomisation studies: a guide, glossary, and checklist for clinicians. Brit. 
Med. J. 362, k601 (2018).

 113. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization 
analysis with multiple genetic variants using summarized data. Genet. 
Epidemiol. 37, 658–665 (2013).

 114. Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. Preprint 
at bioRxiv https://doi.org/10.1101/2020.08.10.244293 (2020).

Acknowledgements
This work was funded by a joint grant from the Leukemia and Lymphoma Society 
(grant no. RTF6006-19) and the Rising Tide Foundation for Clinical Cancer Research 
(grant no. CCR-18-500), and by the Wellcome Trust (grant no. WT098051) to 
G.S.V. This work was also supported by the National Institute for Health Research 
Cambridge Biomedical Research Centre (grant no. BRC-1215-20014). The views 
expressed are those of the authors and not necessarily those of the National Institute 
for Health Research or the Department of Health and Social Care. S.P.K. is supported 
by a United Kingdom Research and Innovation (UKRI) Future Leaders Fellowship 
(grant no. MR/T043202/1). P.M.Q. is funded by the Miguel Servet Program (grant no. 
CP20/00130). M.A.F. is funded by a Wellcome Clinical Research Fellowship (grant no. 
WT098051). R.L. is supported by Cancer Research UK (grant no. C18281/A29019). 
P.C. is supported by a British Heart Foundation Clinical Training Research Fellowship. 
S.B. is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust 
and the Royal Society (grant no. 204623/Z/16/Z). G.S.V. is supported by a Cancer 
Research UK Senior Cancer Fellowship (grant no. C22324/A23015) and work in his 
laboratory is also funded by the European Research Council, Kay Kendall Leukaemia 
Fund, Blood Cancer UK and the Wellcome Trust. This research was conducted using 
the UK Biobank resource under approved applications 56844, 29202 and 26041. We 
thank the participants and investigators involved in the UK Biobank resource and in 
the other genome-wide association studies cited in this work who collectively made 
this research possible.

Author contributions
S.P.K., P.M.Q. and G.S.V. conceived, designed and supervised the study. S.P.K. and 
P.M.Q. carried out data analyses and generated tables and figures. M.G., M.S.V. and 
M.A.F. helped with mutation calling and filtering. T.J. and S.B. performed genome-wide 
association analyses. J.M. conducted and interpreted the replication analyses. R.L. 
assisted with Mendelian randomization analyses. V.I. helped with UK Biobank data 
access and handling. S.B. and P.C. advised on Mendelian randomization analyses. 
C.B. and P.C. helped with UK Biobank trait selection and filtering. S.P. supervised and 
interpreted the replication analyses. S.P.K., P.M.Q. and G.S.V. drafted the manuscript 
with inputs from all authors. All authors approved the final version of the paper.

Competing interests
G.S.V. is a consultant to STRM.BIO and holds a research grant from AstraZeneca for 
research unrelated to that presented here. J.M. and S.P. are current employees and/or 
stockholders of AstraZeneca. The remaining authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41588-022-01121-z.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41588-022-01121-z.

Correspondence and requests for materials should be addressed to Siddhartha P. Kar,  
Pedro M. Quiros or George S. Vassiliou.

Peer review information Nature Genetics thanks the anonymous reviewers for their 
contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.

NATuRe GeNeTICS | www.nature.com/naturegenetics

https://alkesgroup.broadinstitute.org/LDSCORE
https://alkesgroup.broadinstitute.org/LDSCORE
https://www.networkanalyst.ca
http://version10.string-db.org/cgi/download.pl
https://reactome.org/download-data
https://www.eqtlgen.org/cis-eqtls.html
https://gwas.mrcieu.ac.uk/datasets
https://gwas.mrcieu.ac.uk/datasets
https://gwas.mrcieu.ac.uk/datasets
https://github.com/broadinstitute/gatk/releases
https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html
https://github.com/bulik/ldsc
https://github.com/zhenin/HDL
https://fuma.ctglab.nl
https://yanglab.westlake.edu.cn/software/gcta/#COJO
https://yanglab.westlake.edu.cn/software/gcta/#Download
https://ctg.cncr.nl/software/magma
https://fuma.ctglab.nl
https://yanglab.westlake.edu.cn/software/smr/#Download
https://yanglab.westlake.edu.cn/software/smr/#Download
https://www.networkanalyst.ca
https://www.networkanalyst.ca
https://pics2.ucsf.edu
https://pics2.ucsf.edu
https://github.com/sankaranlab/mpn-gwas
https://snp-nexus.org
https://genetics.opentargets.org
http://www.phenoscanner.medschl.cam.ac.uk
https://platform.opentargets.org
https://cansarblack.icr.ac.uk
https://doi.org/10.5281/zenodo.6419042
https://github.com/siddhartha-kar/clonal-hematopoiesis
https://github.com/siddhartha-kar/clonal-hematopoiesis
https://doi.org/10.1101/2020.08.10.244293
https://doi.org/10.1038/s41588-022-01121-z
https://doi.org/10.1038/s41588-022-01121-z
http://www.nature.com/reprints
http://www.nature.com/naturegenetics


Articles NAtUrE GENEtICS

Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Characterization of CH in the uK Biobank. a, Histogram stratified by sex showing the age distribution of individuals in the UKB 
cohort (n=200,453). b, Overall percentage of females and males in the UKB cohort. c, Percentage of the most common self-reported ancestry groups in 
the UKB cohort. Ancestry groups with a frequency lower than 1% were grouped under the ‘Other ancestry group’ category. d, Number of individuals with 
1, 2, 3, and 4 somatic mutations. More than 90% of individuals with CH had only one driver mutation identified. e, Percentages of different CH mutation 
types identified. f, Relative prevalence of each of the six base substitution types amongst the identified CH mutations. g, Density plot showing the variant 
allele fraction (VAF) distribution of all CH somatic mutations. h, Density plot showing similar VAF distribution for different mutation types. Mean and 
median are indicated for g and h.
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Extended Data Fig. 2 | Age distribution of CH by mutant gene, clone size, and sex. a, Prevalence of CH in the cohort with advancing age. The blue 
line represents the smoothed model fitted to a generalized additive model with 95% confidence interval (CI; gray shadow). b, Prevalence of CH by age 
stratified by the top eight most frequently mutated genes. Colored lines represent the smoothed model fitted to a generalized additive model with 95% 
CI (colored shadows). Y-axis is log-scaled. c, Clone size, estimated by the variant allele fraction (VAF), increases with age. The blue line represents the 
smoothed model fitted to a generalized additive model and the shadow represents the 95% CI. d, Empirical cumulative distribution (ECD) of the age 
of individuals with CH stratified by sex. CH was observed one year earlier in females than in males (median 61 versus 62 years; P=1.6x10−4, two-sided 
pairwise Wilcoxon rank sum test).
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Extended Data Fig. 3 | Associations between CH and diseases. a, Phenome-wide association study of CH and incident disease outcomes. Phenotypes 
were extracted from the International Classification of Diseases version-10 (ICD-10) disease codes and grouped in different categories. A total of 
11,787 ICD-10 codes were tested using logistic regression, obtaining results for 2,378. Risk ratio (RR) of each code is represented by a single point with 
a size scale. The black dashed line represents the phenome-wide significant P-value threshold of 10−9. Only ICD-10 codes with false discovery rate 
(FDR)<10−15 are annotated to control for multiple comparisons. Full results with RRs, 95% confidence intervals (CIs), P-values and FDRs are reported in 
Supplementary Table 8. b, Heatmaps showing associations of overall CH (CH), CH with large (CH large) and small (CH small) clones, and CH driven by 
DNMT3A, TET2, ASXL1, JAK2, and SRSF2+SF3B1 mutations with incident hematopoietic neoplasms and cancer in self-reported non-smokers. Red-blue 
color scale represents the hazard ratio (HR). HRs were calculated using competing risks models. Gray color represents failure of the logistic regression 
model (maximum likelihood estimation algorithm) to converge. Asterisk represents a significant association, and its size represents different unadjusted 
P-value cut-offs. All HRs, 95% CIs, sample sizes, P-values, and FDRs (to adjust for multiple comparisons) are reported in Supplementary Table 11. c, Forest 
plot showing the hazard ratios (HRs) for cardiovascular disease (CVD) from competing risks analysis in CH using four models: univariate with CH as the 
only predictor, bivariate including CH and smoking status, bivariate with CH and age, and trivariate with CH, smoking status and age. HR markers with 
unadjusted P<0.05 are depicted in blue. Symbols represent the HRs and error bars represent 95% CIs. All HRs, 95% CIs, sample sizes, P-values, and 
FDRs (to adjust for multiple comparisons) are reported in Supplementary Table 12. Abbreviations: AML, acute myeloid leukemia; MDS, myelodysplastic 
syndromes; MPN, myeloproliferative neoplasms; CMML, chronic myelomonocytic leukemia; CVD, cardiovascular disease.
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Extended Data Fig. 4 | Multi-ancestry associations for the seven lead variants for overall CH risk. Comparison of effect size estimates (odds ratios 
(ORs)) for the seven overall CH risk lead variants between (i) the 505 individuals with CH and 11,893 controls comprising the ancestrally diverse ‘All other 
ancestries combined’ sub-cohort; based on logistic regression and (ii) the 10,203 individuals with CH and 173,918 controls comprising the ‘European 
ancestry’ sub-cohort of the 200k UK Biobank cohort; based on linear mixed models (BOLT-LMM). ORs are presented with alignment to the same allele in 
both sub-cohorts. Symbols represent ORs and error bars represent 95% confidence intervals (CIs).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Heterogeneity of lead GWAS variants across five CH traits. Forest plots with linear mixed model (BOLT-LMM) odds ratios 
(ORs) and 95% confidence intervals (CIs) based on data from Supplementary Tables a, 16, b, 18, c, 19, d, 20, and e, 21. Results for lead variants identified 
at genome-wide significance (P<5x10−8) for each CH trait (a, overall CH, b DNMT3A-CH, c TET2-CH, d large clone CH, and e, small clone CH) are 
plotted alongside results for the same lead variants in the four other genome-wide association analyses conducted. Symbols represent ORs and error 
bars represent 95% confidence intervals (CIs) in a, b, c, d, and e. Sample sizes: 10,203 individuals with CH (‘cases’) and 173,918 individuals without CH 
(‘controls’) for the overall CH analysis; 5,185 cases and 173,918 controls for DNMT3A-CH; 2,041 cases and 173,918 controls for TET2-CH; 4,049 cases and 
173,918 controls for large clone CH; and 6,154 cases and 173,918 controls for small clone CH.
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